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Piaţa Regina Mario No. 1, Of. Postal 5, 1900 Timis¸oara, Romania

~Received 18 March 2003; accepted 15 May 2003!

We generalize the Dirac equation toD11 space–time. The conserved angular
momentum operators and their quantum numbers are discussed. The eigenfunctions
of the total angular momentums are calculated for both oddD and evenD cases.
The exact solutions of theD11-dimensional radial equations of the Dirac equation
with a Coulomb plus scalar potential are analytically presented by studying the
Tricomi equations obtained from a pair of coupled first-order ones. The eigenvalues
are also discussed in some detail. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1604185#

I. INTRODUCTION

The exact solutions of the nonrelativistic and relativistic equations with the Coulomb pote
play an important role in quantum mechanics.1–3 For example, the study of the exact solutions
the Schro¨dinger equation for a hydrogen atom is an important advance at the beginning of
lishment of quantum mechanics. Recently the study of the Dirac equation with the Coulom
scalar potential has been investigated. For instance, the bound states of this case have bee
in 311 dimensions.4,5 Moreover the correspondingS-matrix in the quantum scattering theory h
also been carried out by Vaidya and Souza in 311 dimensions.6 With the interest of the lower-
dimensional field theory and condensed matter physics, the lower-dimensional case seem
cally relevant since the results obtained in this case exhibit some new features. Therefo
bound states of the (211)-dimensional Dirac equation with the Coulomb plus scalar poten
have been investigated in our previous work.7 Similarly with the interest of the higher-dimension
field theory, it is worth studying the exact solutions of this quantum system inD11 dimensional
space–time, which is the main purpose of this work.

This article is organized as follows. Section II is devoted to the generalization of the D
equation toD11 space–time. In Sec. III, the conserved angular momentum operators and
quantum numbers are discussed. The eigenfunctions of the total angular momentums are
lated for both oddD and evenD cases from the view point of the group theory. The rad
equations of this quantum system are obtained. In Sec. IV, the exact solutions of the
equations, which are expressed by the confluent hypergeometric functions, are analytical
sented. The energy levels and some special cases are also discussed in great detail. The co
remarks are given in Sec. V.
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II. THE DIRAC EQUATION IN D¿1 DIMENSIONS

In this section we review some properties of the Dirac equation inD11 dimensional space–
time. The Dirac equation inD11 dimensions can be written as8

i (
m50

D

gm~]m1 ieAm!C~x,t !5MC~x,t !, ~1!

whereM is the mass of the particle, andD11 matricesgm satisfy the anticommutative relations

gmgn1gngm52hmn1, ~2!

with

hmn5hmn5H dmn when m50,

2dmn when mÞ0.
~3!

Throughout this article, the natural units\5c51 are employed if not explicitly stated otherwis
Discuss the special case where onlyA0 of Am is nonvanishing and spherically symmetric:

eA05V~r !, Aa50, when aÞ0. ~4!

The HamiltonianH(x) of the system is expressed as

i ]0C~x,t !5H~x!C~x,t !, H~x!5 (
c51

D

g0gcpc1V~r !1g0M ,

~5!

pc52 i ]c52 i
]

]xc , cP@1,D#.

The orbital angular momentum operatorsLab , the spinor operatorsSab , and the total angular
momentum operatorsJab are defined as follows:

Lab52Lba5 ixa]b2 ixb]a , Sab52Sba5 i
gagb

2
,

Jab5Lab1Sab , 1<a,b<D, ~6!

J25 (
a,b52

D

Jab
2 , L25 (

a,b52

D

Lab
2 , S25 (

a,b52

D

Sab
2 .

The eigenvalue ofJ2 (L2 or S2) is denoted by the CasimirC2(M ), whereM is the highest weight
of the representation to which the total~orbital or spinor! wave function belongs. We will discus
the Casimir in the next section. It is easy to show by the standard method8 that Jab and k are
commutative with the HamiltonianH(x),

k5g0S (
a,b

igagbLab1
D21

2 D 5g0S J22L22S21
D21

2 D . ~7!

III. THE RADIAL EQUATIONS

Because of the spherically symmetric potentialV(r ), the symmetry group of the system
SO(D) group. Erdelyi,9 Louck10 and Chatterjee11 have introduced the hyperspherical coordina
in the realD-dimensional space:
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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x15r cosu1 sinu2¯ sinuD21 ,

x25r sinu1 sinu2¯ sinuD21 ,

xb5r cosub21 sinuk¯ sinuD21 , bP@3,D21#, ~8!

xD5r cosuD21 ,

(
a51

D

~xa!25r 2.

The unit vector alongx is usually denoted byx̂5x/r . The volume element of the configuratio
space is

)
a51

D

dxa5r D21drdV, dV5 )
a51

D21

~sinua!a21dua ,

~9!

r P@0,̀ #, u1P@2p,p#, ucP@0,p#, cP@2,D21#.

We now sketch some necessary information of the SO(D) group. From the representatio
theory of Lie groups,12–14 the Lie algebras of the groups SO(2N11) and SO(2N) are BN and
DN , respectively. Their Chevalley bases with the subscriptm, 1<m<N21, are the same:

Hm~J!5J(2m21)(2m)2J(2m11)(2m12) ,

Em~J!5 1
2~J(2m)(2m11)2J(2m21)(2m12)2 iJ (2m21)(2m11)2 iJ (2m)(2m12)!, ~10a!

Fm~J!5 1
2~J(2m)(2m11)2J(2m21)(2m12)1 iJ (2m21)(2m11)1 iJ (2m)(2m12)!.

However, the bases with the subscriptN are different:

HN~J!52J(2N21)(2N) ,

EN~J!52 iJ (2N21)(2N11)1J(2N)(2N11) , ~10b!

FN~J!5 iJ (2N21)(2N11)1J(2N)(2N11)

for SO(2N11), and

HN~J!5J(2N23)(2N22)1J(2N21)(2N) ,

EN~J!5 1
2~J(2N22)(2N21)1J(2N23)(2N)1 iJ (2N22)(2N)2 iJ (2N23)(2N21)!, ~10c!

FN~J!5 1
2~J(2N22)(2N21)1J(2N23)(2N)1 iJ (2N23)(2N21)2 iJ (2N22)(2N)!,

for SO(2N). The operatorJab may be replaced byLab or Sab depending on the studied wav
functions.Hm(J) span the Cartan subalgebra, and their eigenvalues for an eigenstateum& in a
given irreducible representation~IR! are the components of a weight vectorm5(m1 ,...,mn):

Hm~J!um&5mmum&, mP@1,N#. ~11!

If the eigenstatesum& for a given weightm are degeneracy, this weight is called a multiple weig
otherwise a simple one.Em are called the raising operators andFm the lowering ones. For an IR
there is a highest weightM , which is a simple weight and is used to describe the IR. Generally
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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irreducible representation is also called the highest weight representation and directly deno
M . The CasimirC2(M ) is calculated by the formula@see~1.131! of Ref. 14#

C2~M !5M•~M12% !5 (
m,n51

N

Mmdm~A21!mn~M n12!, ~12!

where% is the half sum of the positive roots in the Lie algebra,A21 is the inverse of the Carton
matrix, anddm are the half square lengths of the simple roots.

The orbital wave functions inD-dimensional space are usually expressed by the sphe
harmonicsYm

( l )( x̂),10,11 which belong to the weightm of the highest weight representation (l )
[( l ,0,...,0). For the highest weight state,m5( l ), we have

Y( l )
( l )~ x̂!5ND,l r

2 l~x11 ix2! l , ~13a!

with the normalization factor

ND,l55 22N2 lA ~2l 12N21!!

pNl ! ~ l 1N21!!
when D52N11,

A~ l 1N21!!

2pNl !
when D52N.

~13b!

Its partnersYm
( l )( x̂) is calculated fromY( l )

( l )( x̂) by lowering operatorsFm(L). The Casimir for the
spherical harmonicYm

( l )( x̂) can be calculated by Eq.~12!:

L2Ym
( l )~ x̂!5C2@~ l !#Ym

( l )~ x̂!, ~14!

with

C2@~ l !#5 l ~ l 1D22!.

It is known that the spinor wave functions as well as those for the total angular momentu
different for D52N11 andD52N, as studied in Ref. 15. Nevertheless, for completeness
clearness, it is necessary to review how to calculate these wave functions with the help
groups SO(2N11) and SO(2N).

A. The SO „2N¿1… case

WhenD52N11 we can define

g05s331, ga5~ is2!3aa , aP@1,2N11#, ~15!

with the Pauli matrixsa , the 2N-dimensional unit matrix1 and the (2N11) matricesaa satis-
fying the following anticommutative relations:

abaa1aaab52dab1, b, a51, 2,...,~2N11!. ~16!

The dimensions ofaa matrices are 2N. Thus the spinor operatorSab becomes a block matrix

Sab513S̄ab , S̄ab52 i
aaab

2
. ~17!

The relation betweenSab andS̄ab is very similar to that between the spinor operators for the Di
spinors and for the Pauli spinors. The operatork becomes
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



to the

ic

by

4471J. Math. Phys., Vol. 44, No. 10, October 2003 Group theory approach to the Dirac equation

Downloaded 
k5s33k̄, k̄52 i (
a,b

aaabLab1
D21

2
. ~18!

The spinorx(m) belongs to the spinor representation (s)[(0,...,0,1). It isfound from Eq.~12!
that the Casimir for the representation (s) can be calculated asC2@(s)#5(2N21N)/4.

On the other hand, it is well known that the product ofYm
( l )( x̂) andx(m8) belongs to the direct

product of two representation (l ) and (s), which is a reducible representation:

~ l !3~s!.~ l ,0,...,0,1! % ~ l 21,0,...,0,1!. ~19!

Generally speaking, there are two different ways to construct a wave function belonging
representation (j )[( l ,0,...,0,1), namely, the combination ofYm

( l )( x̂)x(m8) and that of
Ym

( l 11)( x̂)x(m8), which are different in eigenvalues ofk̄. Considering the spherically symmetr
system, we only calculate the highest weight state for the representation (j ) from the Clebsch–
Gordan coefficients

f uKu,( j )~ x̂!5Y( l )
( l )~ x̂!x@~s!#5ND,l r

2 l~x11 ix2! lx@~s!#, ~20!

with

uKu5C2@~ j !#2C2@~ l !#2C2@~s!#1N5 l 1N,

and

f2uKu,( j )~ x̂!5(
m

Ym
( l 11)~ x̂!x@~ j !2m#^~ l 11!,m,~s!,~ j !2mu~ j !,~ j !&

5ND,l r
2 l 21~x11 ix2! l$x2N11x@~s!#1~x2N211 ix2N!x@~0,...,0,1,1̄!#

1~x2N231 ix2N22!x@~0,...,0,1,1̄,1!#1¯1~x31 ix4!x@~1,1̄,0,...,0,1!#

1~x11 ix2!x@~ 1̄,0,...,0,1!#%, ~21!

with

2uKu5C2@~ j !#2C2@~ l 11!#2C2@~s!#1N52 l 2N.

The wave functionsCK,( j )(x) of the total angular momentum belonging to the IR (j ) can be
written as

CK,( j )~x,t !5r 2Ne2 iEtS F~r !fK,( j )~ x̂!

iG~r !f2K,( j )~ x̂! D , ~22a!

with the following properties:

H1~J!CK,( j )~x!5 lCK,( j )~x!,

HN~J!CK,( j )~x!5CK,( j )~x!,
~22b!

Hm~J!CK,( j )~x!50, mP@2,N21#,

kCK,( j )~x!5KCK,( j )~x!, K56~ l 1N!.

Their partners can be calculated by the lowering operatorsFm .
The radial equation depends on the explicit forms ofaa matrices, which can be expressed

direct products ofN Pauli matricessa :16
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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~23!

a2N115s33s33...3s3 .

From the explicit forms ofaa , one can obtain

~aW • x̂!fK,( j )~ x̂!5r 21 (
b51

2N11

abxb fK,( j )~ x̂!5f2K,( j )~ x̂!,

~24!

~aW •p¢ !r 2NfK,( j )~ x̂!5 (
b51

2N11

abpb r 2NfK,( j )~ x̂!5 iKr 2N21f2K,( j )~ x̂!.

Substitution ofCK( j )(x) into the Dirac equation~5! leads to the following radial equation,

G8~r !1
K

r
G~r !5@E2V~r !2M #F~r !,

~25!

2F8~r !1
K

r
F~r !5@E2V~r !1M #G~r !,

where and hereafter the prime denotes the first derivative with respect to the variabler (r).

B. The SO „2N… case

As we know, the reducible spinor representation of SO(2N) is reduced to two inequivalen
fundamental spinor representations (1s)[(0,0,...,0,1) and (2s)[(0,0,...,1,0). Likewise it is
shown from Eq.~12! that the Casimir for both spinor representations can be obtained asC2@
(6s)#5(2n22n)/4. From theaa matrices given in Eq.~23!, we define thegm matrices forD
52N:

g05a2N11 , ga5a2N11aa , aP@1,2N#. ~26!

Here theg0 is a diagonal matrix where half of the diagonal elements are equal to11 and the
remainder to21. On considering the spinor operatorSab and the operatork are commutative with
g0, each of them becomes a direct sum of two matrices, referring to the rows with the eigen
11 and21 of g0, respectively. The spinorsx6(m) belong to the spinor representations (1s)
and (2s), respectively, and satisfy

g0x6~m!56x6~m!. ~27!

Thus the product ofYm
( l )( x̂) andx6(m8) belongs to the direct product of two representati

( l ) and (6s), which is a reducible representation:

~ l !3~1s!.~ l ,0,...,0,1! % ~ l 21,0,...,0,1,0!,
~28!

~ l !3~2s!.~ l ,0,...,0,1,0! % ~ l 21,0,...,0,1!.
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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There exist two kinds of representations for the total angular momentum: the represen
( j 1)[( l ,0,...,0,1) and therepresentation (j 2)[( l ,0,...,0,1,0). Nevertheless, their Casimirs a
equal:

C2@~ j 1!#5C2@~ j 2!#5 l ~ l 12N21!1
N~2N21!

4
. ~29!

Similar to the case of SO(2N11), there exist two different ways to obtain the wave functio
belonging to the representation (j 1): the combination of Ym

( l )( x̂)x1(m8) and that of
Ym

( l 11)( x̂)x2(m8). Because of the spherical symmetry, one only calculates the highest weigh
for the representation (j 1) by the Clebsch–Gordan coefficients:

fK,( j 1)~ x̂!5Y( l )
( l )~ x̂!x1@~1s!#5ND,l r

2 l~x11 ix2! lx1@~1s!#, ~30a!

and

f2K,( j 1)~ x̂!5(
m

Ym
( l 11)~ x̂!x2@~ j 1!2m#^~ l 11!,m,~1s!,~ j 1!2mu~ j 1!,~ j 1!&

5ND,l r
2 l 21~x11 ix2! l$x2N211 ix2Nx2@~2s!#1~x2N231 ix2N22!

3x2@~0,...,0,1,1̄,0!#1~x2N251 ix2N24!x2@~0,...,0,1,1̄,0,1!#1¯

1~x31 ix4!x2@~1,1̄,0,...,0,1!#1~x11 ix2!x2@~ 1̄,0,...,0,1!#%, ~30b!

with

K5C2@~ j 1!#2C2@~ l 11!#2C2@~1s!#1N2 1
25 l 1N2 1

2.

However, for the representation (j 2)[( l ,0,...,0,1,0) we obtain

f2K,( j 2)~ x̂!5Y( l )
( l )~ x̂!x2@~2s!#5ND,l r

2 l~x11 ix2! lx2@~2s!#, ~31a!

and

fK,( j 2)~ x̂!5(
m

Ym
( l 11)~ x̂!x1@~ j 2!2m#^~ l 11!,m,~2s!,~ j 2!2mu~ j 2!,~ j 2!&

5ND,l r
2 l 21~x11 ix2! l$x2N212 ix2Nx@~1s!#1~x2N231 ix2N22!x1@~0,...,0,1,0,1̄!#

1~x2N251 ix2N24!x1@~0,...,0,1,1̄,1,0!#1¯1~x31 ix4!x1@~1,1̄,0,...,0,1,0!#

1~x11 ix2!x1@~ 1̄,0,...,0,1,0!#%, ~31b!

with

K5C2@~ j 2!#2C2@~ l 11!#2C2@~1s!#1N2 1
252~ l 1N2 1

2!.

From the explicit forms ofaa one obtains

~aW • x̂!fK,( j v)~ x̂!5r 21(
a51

2N

aaxafK,( j v)~ x̂!5f2K,( j v)~ x̂!,

~32!

~aW •p¢ !r 2N11/2fK,( j v)~ x̂!5 (
a51

2N

aapa r 2N11/2fK,( j v)~ x̂!5 iKr 2N21/2f2K,( j v)~ x̂!,
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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with v51 or 2.
The wave functionsCK,( j v)(x) of the total angular momentum belonging to the IR (j v) are

expressed as

C uKu,( j 1)~x,t !5r 2N11/2e2 iEt$F~r !f uKu,( j 1)~ x̂!1 iG~r !f2uKu,( j 1)~ x̂!%,

C2uKu,( j 2)~x,t !5r 2N11/2e2 iEt$F~r !f2uKu,( j 2)~ x̂!1 iG~r !f uKu,( j 2)~ x̂!%, ~33a!

kCK,( j v)~x!5KCK,( j v)~x!, uKu5 l 1N2 1
2, v51 or 2,

with the following properties:

H1~J!CK,( j v)~x!5 lCK,( j 1)~x!, HN21~J!CK,( j 1)~x!50, ~33b!

HN~J!CK,( j 1)~x!5CK,( j 1)~x!, HN21~J!CK,( j 2)~x!5CK,( j 2)~x!, ~33c!

HN~J!CK,( j 2)~x!50, Hm~J!CK,( j v)~x!50, mP@2,N22#. ~33d!

Their partners can be calculated by the lowering operatorsFm .
Substitution ofCK( j v)(x) into the Dirac equation~5! allows us to obtain the radial equation

which are in the same forms as those inD52N11 case:

G8~r !1
K

r
G~r !5@E2V~r !2M #F~r !,

~34!

2F8~r !1
K

r
F~r !5@E2V~r !1M #G~r !.

IV. THE EXACT SOLUTIONS OF THE RADIAL EQUATION

Although the wavefunctions and the eigenvaluesK are different for theD52N11 case and
the D52N case, the forms of the radial equations are unified

GKE8 ~r !1
K

r
GKE~r !5@E2V~r !2M #FKE~r !,

2FKE8 ~r !1
K

r
FKE~r !5@E2V~r !1M #GKE~r !, ~35!

K56~2l 1D21!/2.

We now consider the Dirac equation with a mixed potential including a Coulomb pote
and a scalar one. The Coulomb potential is derived from the exchange of massless p
between the nucleus and the lepton orbiting around it, namely,

Vc52
A1

r
. ~36!

However, the scalar potential

Vs52
A2

r
~37!
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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is added to the mass term of the Dirac equation, which can be interpreted as an effective, po
dependent mass. It is created by the exchange of the massless scalar meson. TheA1 andA2 are the
electrostatic and the scalar coupling constants, respectively.

It is found that the radial componentsFKE(r ) and GKE(r ) satisfy the following first-order
differential equations

GKE8 ~r !1
K

r
GKE~r !5S E2M1

A11A2

r DFKE~r !,

~38!

2FKE8 ~r !1
K

r
FKE~r !5S E1M1

A12A2

r DGKE~r !.

It is convenient to introducer for the bound states:

r52rAM22E2, uEu,M . ~39!

We thus have

GKE8 ~r!1
K

r
GKE~r!5S 2

1

2
AM2E

M1E
1

A11A2

r DFKE~r!,

~40!

FKE8 ~r!2
K

r
FKE~r!5S 2

1

2
AM1E

M2E
2

A12A2

r DGKE~r!.

Define the wave functionsF6(r) with the forms

GKE~r!5AM2E@F1~r!1F2~r!#,
~41!

FKE~r!5AM1E@F1~r!2F2~r!#.

Substitutions of Eq.~41! into Eq. ~40! allow us to write down

F18 ~r!1F28 ~r!1
K

r
@F1~r!1F2~r!#5F2

1

2
1

A11A2

r
AM1E

M2EG @F1~r!2F2~r!#,

~42!

F18 ~r!2F28 ~r!2
K

r
@F1~r!2F2~r!#5F2

1

2
2

A12A2

r
AM2E

M1EG @F1~r!1F2~r!#.

Their addition and subtraction lead to

F18 ~r!2S A1E1A2M

rAM22E2
2

1

2D F1~r!52S K

r
1

A1M1A2E

rAM22E2 D F2~r!,

~43!

F28 ~r!1S A1E1A2M

rAM22E2
2

1

2D F2~r!52S K

r
2

A1M1A2E

rAM22E2 D F1~r!.

Taking the following conventions,

t5
A1E1A2M

AM22E2
, t85

A1M1A2E

AM22E2
, ~44!

we have
22 Sep 2003 to 132.248.134.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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F18 ~r!2S t

r
2

1

2DF1~r!52
t81K

r
F2~r!,

~45!

F28 ~r!1S t

r
2

1

2DF2~r!5
t82K

r
F1~r!,

from which we can obtain the following important second-order differential equations:

F d2

dr2 1
1

r

d

dr
1S 2

1

4
1

t61/2

r
2

h2

r2 D GF6~r!50,

~46!
h25K22A1

21A2
2 .

For the weak Coulomb potential, we have

h5AK22A1
21A2

2.0. ~47!

It is found that Eq.~46! is a special case of the Tricomi equation,17 which can be expressed as

d2y

dx2 1S a1
b

xD dy

dx
1S a1

a

x
1

j

x2D y50. ~48!

From the behaviors of the wave functions at the origin and infinity, we define

F6~r!5rhe2r/2R6~r!. ~49!

Substitution of this into~47! leads to

d2

dr2 R6~r!1S 211
112h

r D d

dr
R6~r!1

t2h2 1
26

1
2

r
R6~r!50, ~50!

whose solutions are the confluent hypergeometric functions

R1~r!5a0F~h2t,2h11;r!,
~51!

R2~r!5b0F~11h2t,2h11;r!,

which imply that GKE(r) and FKE(r) can be directly expressed by the combinations of
confluent hypergeometric functions.

We now study the relation between the coefficientsa0 andb0 . Before proceeding to do so,
is necessary to review the following recursive relations between the confluent hypergeo
functions17

g
d

dz
F~a,g;z!5a F~a11,g11;z!,

zF~a11,g11;z!5gF~a11,g;z!2gF~a,g;z!,
~52!

aF~a11,g11;z!5~a2g!F~a,g11;z!1gF~a,g;z!,

aF~a11,g;z!5~z12a2g!F~a,g;z!1~g2a!F~a21,g;z!.

It is shown from Eqs.~46!, ~51! and ~52! that
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S h2t

r
a01

t81K

r
b0DF~11h2t,2h11;r!50. ~53!

Since botha0 andb0 cannot be vanishing, we obtain

b05
t2h

t81K
a0 . ~54!

From Eq.~42! we thus have

GKE~r!5NKEAM2Erhe2r/2

3@~t81K !F~h2t,2h11;r!1~t2h!F~11h2t,2h11;r!#,
~55!

FKE~r!5NKEAM1Erhe2r/2

3@~t81K !F1~h2t,2h11;r!2~t2h!F~11h2t,2h11;r!#,

where the normalization factorNKE5a0(t81K)21(2AM22E2)21/2 can be determined later.
We now study the eigenvalues of this quantum system. The quantum condition is ob

from the finiteness of the solutions at infinity:

t2h5n850,1,2,..., ~56!

whenn850, h5t, and

K25t21A1
22A2

25~t8!2.

ThereforeK has to be positive in order to avoid the trivial solution.
Introducing the principal quantum number

n5uKu2~D23!/21n85uKu2~D23!/21t2h5 l 111n851, 2,..., ~57!

we have

EA11MA2

AM22E2
5n2uKu1

D23

2
1h5n81h[k. ~58!

The energyE can be solved from Eq.~58!:

E~n,K !5M H 2
A1A2

A1
21k2 6F S A1A2

A1
21k2D 2

2
A2

22k2

A1
21k2G1/2J . ~59!

We now consider a few special cases. First, ifA150, thenh5AK21A2
2, and

E~n,K !56M S 12
A2

2

k2D 1/2

. ~60!

It implies that there are two branches of solutions symmetric for the positive and negative
gies. For a largeD, we have

E~n,D !.6M @122A2
2D2214A2

2~2n23!D232¯#, ~61!

which implies that the energy is independent ofl for a largeD. For a smallA2 , we have
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E~n,l ,D !.6M H 12
A2

2

2@n1~D23!/2#2 1
A2

4

2@n1~D23!/2#4 S 2n1D23

2l 1D21
2

1

4D J , ~62!

where the first term on the right-hand side is the rest energyM (c251 in our conventions!, the
second one is from the solutions of the Schro¨dinger equation, and the third one is the fine struct
energy, which removes the degeneracy between the states with the samen.

Second, ifA250, thenh5AK22A1
2 and from Eq.~58! E has the same sign asA1 when

K2.A1
2. For the attractive Coulomb potential (A1.0) we have the positive energyEnK

EnK5M S 11
A1

2

k2D 21/2

. ~63!

It coincides with the conclusion from the Sturm–Liouville theorem for a weak attrac
potential.18 For a largeD similarly we have the same result as Eq.~61!.

For a smallA1 , we have

E~n,l ,D !.M
A1

uA1u H 12
A1

2

2@n1~D23!/2#2 2
A1

4

2@n1~D23!/2#4 S 2n1D23

2l 1D21
2

3

4D J . ~64!

Similarly, the physical meanings of three terms are similar to those of Eq.~62! except for the
different expansion coefficients.

We are now briefly considering the special caseD51 in this case. It is found that there i
absence of the bound states sinceh becomes imaginary regardless of the value ofA1 . This can be
easily checked from the fact that the eigenvalues and eigenfunctions do not exist at all.

Third, if A15A2 , we haveh5uKu and

E~n!5M F2
A1

2

A1
21~n1~D23!/2!2 6

~n1~D23!/2!2

A1
21~n1~D23!/2!2G . ~65!

If we choose the negative sign in the result, we haveE52M , which is a singular solution of Eq
~58!. For the positive sign, we have

E~n!5M F12
2A1

2

A1
21~n1~D23!/2!2G . ~66!

We now determine the normalization factorNKE from the normalization condition

E CKE
† CKEdV51. ~67!

Noticing n85t2h is a non-negative integer, we can express the confluent hypergeometric
tion by the associated Laguerre polynomial19

Ln
a~r!5

G~a1n11!

n!G~a11! 1F1~2n,a11;r!, ~68!

E
0

`

rae2rLn
a~r!Lm

a ~r!dr5
G~n1a11!

n!
dnm . ~69!

Through a direct calculation we obtain

NKE5
~M22E2!1/4

G~2h11! F G~t1h11!

2Mt8~K1t8!~t2h!! G
1/2

. ~70!
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V. CONCLUDING REMARKS

In this work we have studied the~D11!-dimensional Dirac equation with a Coulomb plu
scalar potential with the interest of higher-dimensional field theory. The eigenfunctions c
analytically obtained by studying the second-order differential equations obtained from the
order coupled ones. The eigenvalues as well as their special cases are studied. Before en
article, we give two remarks here. First, in comparison with the 3D case, the angular mom
quantum numberK in D11 dimensions plays the role of the good quantum numberk in three
dimensions~more strictly,uKu1 1

2↔uku). Second, for the special caseD51, it is found from Eq.
~35! that K50. Therefore, it is shown from Eq.~47! that h becomes imaginary ifuA2u,uA1u,
which means that there is absence of the bound states in this case. On the contrary, there
bound states ifuA2u.uA1u.
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