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We generalize the Dirac equation @+1 space—time. The conserved angular
momentum operators and their quantum numbers are discussed. The eigenfunctions
of the total angular momentums are calculated for both Ddahd everD cases.

The exact solutions of the + 1-dimensional radial equations of the Dirac equation
with a Coulomb plus scalar potential are analytically presented by studying the
Tricomi equations obtained from a pair of coupled first-order ones. The eigenvalues
are also discussed in some detail. 2003 American Institute of Physics.
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I. INTRODUCTION

The exact solutions of the nonrelativistic and relativistic equations with the Coulomb potential
play an important role in quantum mechanicdFor example, the study of the exact solutions of
the Schrdinger equation for a hydrogen atom is an important advance at the beginning of estab-
lishment of quantum mechanics. Recently the study of the Dirac equation with the Coulomb plus
scalar potential has been investigated. For instance, the bound states of this case have been studied
in 3+ 1 dimension$:®> Moreover the correspondirmatrix in the quantum scattering theory has
also been carried out by Vaidya and Souza i Bdimension$. With the interest of the lower-
dimensional field theory and condensed matter physics, the lower-dimensional case seems physi-
cally relevant since the results obtained in this case exhibit some new features. Therefore, the
bound states of the (21)-dimensional Dirac equation with the Coulomb plus scalar potential
have been investigated in our previous woimilarly with the interest of the higher-dimensional
field theory, it is worth studying the exact solutions of this quantum systel+ird dimensional
space—time, which is the main purpose of this work.

This article is organized as follows. Section Il is devoted to the generalization of the Dirac
equation toD +1 space—time. In Sec. lll, the conserved angular momentum operators and their
quantum numbers are discussed. The eigenfunctions of the total angular momentums are calcu-
lated for both oddD and evenD cases from the view point of the group theory. The radial
equations of this quantum system are obtained. In Sec. IV, the exact solutions of the radial
equations, which are expressed by the confluent hypergeometric functions, are analytically pre-
sented. The energy levels and some special cases are also discussed in great detail. The concluding
remarks are given in Sec. V.
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II. THE DIRAC EQUATION IN D+1 DIMENSIONS

In this section we review some properties of the Dirac equatidd il dimensional space—
time. The Dirac equation il +1 dimensions can be written®s

D

i EO Y9, +ieA,) V(1) =MW (xt), (1)
=

whereM is the mass of the particle, aft+ 1 matricesy,, satisfy the anticommutative relations:
YTty =291, 2
with

6,y When u=0,

—0d,, Wwhen u#0.

©)

77/-“’: 77“]}:

Throughout this article, the natural unfis=c=1 are employed if not explicitly stated otherwise.
Discuss the special case where oAly of A, is nonvanishing and spherically symmetric:

eA=V(r), A,=0, when a#0. (4)

The HamiltonianH(x) of the system is expressed as

D
i96W (x,) =H() W (x,t), HOO= 2, 9°¥pet V(N +9°M,
(5)
.9
Pc=—1d.= |o7x°’ ce[lD].

The orbital angular momentum operatdrg,, the spinor operatorS,;,, and the total angular
momentum operatord,, are defined as follows:

. . . Ya7v
Lab= —Lpa=iXadp—iXpda, Sap= = Spa=I o

Jab: Lab—l—Sab, l<sa<b=D, (6)

D D D
P= > B, L= > L3, = > 5.
a<b=2 a<b=2

a<b=2

The eigenvalue od? (L2 or S?) is denoted by the Casim@,(M), whereM is the highest weight
of the representation to which the totakbital or spinoy wave function belongs. We will discuss
the Casimir in the next section. It is easy to show by the standard nfethat,, and « are
commutative with the Hamiltoniahl (x),

_ D-1 D-1
k=9 > I'ya‘ybLalﬁ——2 )I*}/O(\JZ—LZ—SZ-%—2 . (7)

a<b

lll. THE RADIAL EQUATIONS

Because of the spherically symmetric potendl), the symmetry group of the system is
SO(D) group. Erdely? Louck!® and Chatterje®® have introduced the hyperspherical coordinates
in the realD-dimensional space:
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xt=r cosh, sinf, - sinfp_1,
x2=r sinf, sinf, - sinfp_1,
XP=r cos,_;siné--sinfp_;, be[3D—1], (8)

xP=r cosbp_,

D
> (x)?=r?.
a=1

The unit vector along is usually denoted bg=x/r. The volume element of the configuration
space is

D D-1
IT dx@=rP~drdQ, dO=[] (sin6,)2 1dé,,
a=1 a=1

©)
re[0.,°], e[ —m,m], 6.€[0,7], ce[2D-1].

We now sketch some necessary information of the 3O@roup. From the representation
theory of Lie groups?~**the Lie algebras of the groups SOz 1) and SO(N) are By and
Dy, respectively. Their Chevalley bases with the subsquipt<u<N-—1, are the same:

Hu(D)=2pu-1)2m = J2u+1)(2u+2)»
Eu(9)= 202w 2u+ 1)~ d@u-1)2u+2)~ W @u-1)2u+ 1)~ W @u)2u+2): (108
Fu(9) =20 u+ 1)~ deu-1)@ur 2+ 1 @u-1)@ur 1t 1 @uy2u+2)-
However, the bases with the subsciptare different:
HNn(I)=2J2n-1)(2n) »
En(d)=—1Jn-nn+ T Ienyen+1) s (10b)
Fn(d) =1 on-1)en+1) TN @en+ 1)
for SO(2N+1), and
HN(I)=Jan-3)2n-2) T dan—1)(2N) 5
En(3)= 3(Jan-2)an-1)F Jan-3y2ny T 19 an-2)(2n) — 1 2n-3)(2n-1)) (100
Fn(d)=3(Jan-2)an—1)+ Jean—3)2ny T 19 (2an-3)an—1)~ 19 (2n-2)2n))

for SO(2N). The operatold,, may be replaced by ,, or S,, depending on the studied wave
functions.H ,(J) span the Cartan subalgebra, and their eigenvalues for an eigejnsjaite a
given irreducible representatidiR) are the components of a weight vector=(m;,...,m,):

H,(J)|m)y=m,|m), wel[1N]. (12)

If the eigenstaten) for a given weighim are degeneracy, this weight is called a multiple weight,
otherwise a simple oné , are called the raising operators afg the lowering ones. For an IR
there is a highest weight , which is a simple weight and is used to describe the IR. Generally, the
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irreducible representation is also called the highest weight representation and directly denoted by
M. The CasimirC,(M) is calculated by the formulesee(1.13)) of Ref. 14

N
Co(M)=M-(M+29)= 21 M,d,(A™Y),,(M,+2), (12)
mv=

wherep is the half sum of the positive roots in the Lie algeb#a! is the inverse of the Carton
matrix, andd,, are the half square lengths of the simple roots.

The orbital wave functions iD-dimensional space are usually expressed by the spherical
harmonicsY{ (%), which belong to the weighin of the highest weight representatioh (
=(l,0,...,0). For the highest weight state=(l), we have

Y (%) =Np r (xt+ix?)", (133

with the normalization factor
- (2l +2N—1)! h DN+ 1
N N1y When b=2N+d,
(I+N—-1)!
W when D=2N.

Its partnersy (%) is calculated fromy{{}(%) by lowering operator§ ,(L). The Casimir for the
spherical harmonlc((')(x) can be caIcuIated by E¢12):

Np = (13b

L2YD(x)=C,[(N]YV(%), (14)
with
C,[(H]=1(1+D-2).

It is known that the spinor wave functions as well as those for the total angular momentum are
different forD=2N+1 andD=2N, as studied in Ref. 15. Nevertheless, for completeness and
clearness, it is necessary to review how to calculate these wave functions with the help of the
groups SO(RlI+1) and SO(N).

A. The SO(2N+1) case

WhenD=2N+1 we can define
YW=03Xx1, vi=(ioy) X ay, ae[1,2N+1], (15

with the Pauli matrixo-,, the 2V-dimensional unit matrixl and the (N-+1) matricesa, satis-
fying the following anticommutative relations:

apaat aaap=2658,,1, b, a=1, 2,...(2N+1). (16)
The dimensions ofr, matrices are . Thus the spinor operat@,, becomes a block matrix

— Aap

Sap=1XSap,  Sap=—i— . (17)

The relation betweeB,;, andS,;, is very similar to that between the spinor operators for the Dirac
spinors and for the Pauli spinors. The operatdrecomes
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- D-1
K:0'3><K, K:_|2 aaabLab+—. (18)
a<b 2

The spinory(m) belongs to the spinor representatia®)=£(0,...,0,1). It isfound from Eq.(12)
that the Casimir for the representatics) can be calculated &3,[(s)]=(2N2+ N)/4.

On the other hand, it is well known that the producMﬁff(R) andy(m’) belongs to the direct
product of two representation)(and (s), which is a reducible representation:

(Iyx(s)=(l,0,...,0,9@(1-1,0,..,0,2). (19

Generally speaking, there are two different ways to construct a wave function belonging to the
representation jj=(l,0,...,0,1), namely, the combination onE]'q)(f()X(m’) and that of
Y%”)(f()x(m’), which are different in eigenvalues af Considering the spherically symmetric
system, we only calculate the highest weight state for the representgjidrof the Clebsch—
Gordan coefficients

Bk, () (0= YR XL(8)]=Np 1 (X +ix?) x[(9)], (20
with
[K[=Cal(i)]-Cal(D]=Cal(s)]+N=I+N,
and
¢ -1k, ()(0= 2 Yo" DS =mI((1+1),m,(9), (1) = ml(). (1))
=Np I 71O +ix?) (N[ (8) 1+ (N1 +ix2N) [ (0,...0,1,1)]
+ (N34 ix2N=2)4[(0,...0,1,11) ]+ -+ (x3+ix* x[(1,1,0,...,0,]
+(x*+ix?)x[(1,0,...,0,21}, (21)
with
—|K[=Cal(})]-Cal(1+1)]-Cyl(s)]+N=—1=N.
' The wave functionglk (;,(x) of the total angular momentum belonging to the R ¢an be
written as
Vi =rte™ EE:??S%) @29
with the following properties:
H1(I) Wi ) (¥) =¥ (X,
HN(D Wi,y (%) =Wk (5)(X),
(22b)

HL()Wk ) (X)=0, we[2N—-1],
Kq}K‘(j)(X):K\PK’(J‘)(X), K:i(|+N)
Their partners can be calculated by the lowering operdqrs

The radial equation depends on the explicit formsrgfmatrices, which can be expressed by
direct products oN Pauli matricesr, :*°
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m—1 N—m

@y 1 =1IX . XIX G X03X... X035,

m—1 N—m

Qapy 1 =1X .. XIX Ty X T3 X ... X 03, (23

C!2N+1:O'3><0'3><...><0'3.

From the explicit forms ofx,, one can obtain
2N+1
(a-%) . y(R)=r"1 bgl apx® b (1) (R) = bk (%),

2N+1 (24)

(a-p)r Ny (2= bgl apPy I Ny y(R)=iKr Ny ().

Substitution of ¥ ;,(X) into the Dirac equatiort5) leads to the following radial equation,

G'(r)+ ?G(r)=[E—V(r)—M]F(r),
< (25
—F'(r)+ TF(r)=[E—V(r)+M]G(r),

where and hereafter the prime denotes the first derivative with respect to the vafiable

B. The SO(2N) case

As we know, the reducible spinor representation of S@)2s reduced to two inequivalent
fundamental spinor representations )=(0,0,..,0,1) and ¢s)=(0,0,..,1,0). Likewise it is
shown from Eq.(12) that the Casimir for both spinor representations can be obtainégi[as
(+s)]=(2n%?—n)/4. From thea, matrices given in Eq(23), we define they* matrices forD
=2N:

Y'= a1, Y =aoNi1@a, ae[1,2N]. (26)

Here they? is a diagonal matrix where half of the diagonal elements are equalltaand the
remainder to— 1. On considering the spinor operafy;, and the operatok are commutative with

7P, each of them becomes a direct sum of two matrices, referring to the rows with the eigenvalues
+1 and—1 of 9°, respectively. The spinorg. (m) belong to the spinor representations <)

and (—s), respectively, and satisfy

'}’OXi(m)ziXi(m)- (27)

Thus the product of(ﬁ'}(i) and y.(m’) belongs to the direct product of two representation
(I and (x£s), which is a reducible representation;

(1% (+s)=(1,0,...,0,d®(1-1,0,..,0,1,0),

(28)
(% (=s)=(1,0,...0,1,0&(1—1,0,..,0,1).
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There exist two kinds of representations for the total angular momentum: the representation
(j»=(,0,...,0,1) and theepresentationjp)=(l,0,...0,1,0). Nevertheless, their Casimirs are
equal:

N(2N—1)

Cal(i)1=Cal(j2)]=1(+2N-1)+ —

(29)
Similar to the case of SO(2+ 1), there exist two different ways to obtain the wave functions
belonging to the representationj,): the combination onQR(X)XJr(m’) and that of

Yﬂf 1)(>”<))(,(m’). Because of the spherical symmetry, one only calculates the highest weight state
for the representationj{) by the Clebsch—Gordan coefficients:

b1 = YR X+ [(+9)]=Np 1~ (x*+ix?) x [(+9)], (309
and
b0 0= 2 YR PR~ mA+1).m,(+9). ()= ml(i2).(10)
=Np,r 1 i) N iy [(=9) ]+ (34X )
X x_[(0,...0,1,10)]+ (x5 ixN "4y [(0,...0,1,1,0,1)]+ -
+(C+ix*)x_[(1,1,0,...,0,D]+ (x +ix?)y_[(1,0,...,0,0 ]}, (30b)
with

K=Cy[(j1)]=Co[(I1+1)]=Cy[(+5)]+N—3=1+N—3.
However, for the representation,j=(l,0,...,0,1,0) we obtain
¢*KV(J'2)()A():Y8;()’Z)X7[(_S)]:ND,|r7|(Xl+iX2)|X7[(—s)], (313

and

i) (0= 2 Y D R)xL(12)=mI{((1+1),m,(=5),(12) = ml(j2). ()

=Np,r ™2 +ix2) {2V ix 2Ny (+) ]+ (2N 3 +ix2N72) ¢, [(0,...0,1,0,1]
+(xNB 4N [(0,...0,1,51,0) ]+ -+ (C+ix) x,[(1,1,0,...0,1,0)]
+(x*+ix?)x,[(1,0,...0,1,0 ]}, (31b)
with
K=Cy[(j2)]-Col(1+1)]-Cy[(+s)]+N—3=—(I+N—3).

From the explicit forms ofx, one obtains

2N
(@) (,) (=171 2 X () (0= k)%,

(32)
2N

(&.r))r—N+1/2¢K’(jw)(k):azl @,Pa r_N+1/2¢K,(jw)()’\():iKr_N_1/2¢—K,(jw)()z)!
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with =1 or 2.

The wave functionslva(jw)(x) of the total angular momentum belonging to the IR)(are
expressed as

qf|K\,(jl)(Xat):r7N+1/2e7iEt{F(r)¢\K|,(j1)()’z)+iG(r)¢f|K\,(j1)(5\()}

W), (%=1 TNVRTEYE (1) d_ ) (1, (R +HIG (1) i,y (R} (333
kWi ) =K¥y (), [K|=I+N=3 =1 or 2,
with the following properties:
H1(D) Wi, ,) 0 =1k ) (%), Hy-1(3) W ,)(X) =0, (330)
HNID W) ) =Wk 1)(X)s Hn-1(D Wi, (X) =Tk (j,)(X), (339
Ha) Wi )(0=0,  H()W¥g ) (x)=0,  pe[2N-2]. (33d)

Their partners can be calculated by the lowering operdQrs

Substitution of\PK(jw)(x) into the Dirac equatioif5) allows us to obtain the radial equations,
which are in the same forms as thoseDr-2N+ 1 case:

G’(r)+$G(r)=[E—V(r)—M]F(r),

(34
—F’(r)+$F(r)=[E—V(r)+M]G(r).

IV. THE EXACT SOLUTIONS OF THE RADIAL EQUATION

Although the wavefunctions and the eigenvalfeare different for theD =2N+1 case and
the D=2N case, the forms of the radial equations are unified

K
Gye(r)+ TGKE(r):[E_V(r)_M]FKE(r)a
K
_F|'<E(r)+?FKE(r):[E_V(r)+M]GKE(V), (39
K=+(2l+D—1)/2.

We now consider the Dirac equation with a mixed potential including a Coulomb potential

and a scalar one. The Coulomb potential is derived from the exchange of massless photons
between the nucleus and the lepton orbiting around it, namely,

A
VCZ - T (36)
However, the scalar potential
Az
Vs=—— 37)
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is added to the mass term of the Dirac equation, which can be interpreted as an effective, position-
dependent mass. It is created by the exchange of the massless scalar meggrade, are the
electrostatic and the scalar coupling constants, respectively.

It is found that the radial componenisc(r) and Gyg(r) satisfy the following first-order
differential equations

A+A;
r

K
GI,(E(r)_'—TGKE(r):(E_M"_ )FKE("),

(38)

A~ Az
r

K
—F,’<E(r)+TFKE(r)=(E+M+ )GKE(r).

It is convenient to introduce for the bound states:
p=2rJM?—E?, |E|<M. (39
We thus have

M—E A;+A,

Fre(p),

N| =

K
Gkel(p) + ;GKE(p):( -

Er KF B 1 /M+E Al_AZG
KE(p)_; ke(p)= _5 M—E_ P ke(p).

Define the wave function® .. (p) with the forms
Gke(p)=VM—E[®.(p)+P_(p)].
Fke(p)=VM+E[®,(p)—P_(p)].

Substitutions of Eq(41) into Eq. (40) allow us to write down

(40

(41)

: : K [ 1 A+A, MTE]|
‘1’+(p)+¢_(p)+;[‘1’+(p)+‘1>-(p)]— 5t P M_E_[<I’+(p)—‘1>-(p)],

: (42
, , K 1 A-A, [M-E
<D+(p)—<1>7(p)—;[‘Ih(p)—@f(p)]: T3, Ve LP+(P+P-(p)]

Their addition and subtraction lead to

AE+AM 1

pyMZ-E2 2

AE+AM 1

pyMZ-E2 2

Taking the following conventions,

K AM+AE

+—
PPN VEa=

K AM+AE

p pxll\/lz—Ez

D, (p)=- D _(p),

D' (p)—
(43

®’(p)+ O _(p)=- D, (p).

AE+A,M . AM+AE

(44)

we have
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P’ )_(Z_E>(I) —_ﬂq) )
+(p p 2 +(P)_ p —(P ’
(49)

T 1 7 —K
D (p)+ . §><1>(p)= T®+(p),

from which we can obtain the following important second-order differential equations:

d> 1d 1 7+112 72 o 0
ozt P o2 +(p)=0,

a7 dp
2 2 2 2 (46)
7?=K2—AZ+A3.
For the weak Coulomb potential, we have
n=\K?—AZ+A3>0. (47

It is found that Eq(46) is a special case of the Tricomi equatidrnwhich can be expressed as

¢ y=0. (48)

From the behaviors of the wave functions at the origin and infinity, we define
D.(p)=p"e ""Ru(p). (49
Substitution of this intq47) leads to

2

WRt(p)+ -1+

d
)$R+(p)+—R+(p)=0, (50)
whose solutions are the confluent hypergeometric functions

Ri(p)=ay®(n—7.2n+1p),
(51
R_(p)=be®(1+n—127+1p),

which imply that Gxe(p) and Fxe(p) can be directly expressed by the combinations of the
confluent hypergeometric functions.

We now study the relation between the coefficieagsandb,. Before proceeding to do so, it
is neceséls7ary to review the following recursive relations between the confluent hypergeometric
function

d
yd—Zq)(a,y;Z):aCD(a—i- 1,y+1;2),

z®(a+1,y+1;2)=yP(at+l,y;2)— vP(a,y;2),
(52)
a®(a+1,y+1;2)=(a—y)P(a,y+1;2)+ yP(a,v,2),
a®(a+1,y,2)=(z+2a—y)P(a,7;2)+(y—a)P(a—1,y;2).

It is shown from Eqs(46), (51) and (52) that
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n—T 7 +K

Aot

bo|P(1+n—71,29+1;p)=0. (53

Since bothay, andb, cannot be vanishing, we obtain

b=
0= K %o (54

From Eqg.(42) we thus have

Gke(p)=Nke VM —Ep7e ™72

X[(7' +K)D(n—7.27+1;p) + (1= P(1+ 59— 729+ 1ip)],
(55
Fre(p)=NgeVM+Ep7e

X[ +K)P1(n—729+1;p)— (7= )P (1+n—712n+1;p)],
where the normalization factdyg=aq(7' +K) (2/M?—E?) 2 can be determined later.
We now study the eigenvalues of this quantum system. The quantum condition is obtained
from the finiteness of the solutions at infinity:
—n=n"=0,1.2,.., (56)
whenn’=0, »=r, and
K2=r?+Al-AZ=(7")%

ThereforeK has to be positive in order to avoid the trivial solution.
Introducing the principal quantum number

n=|K|—(D—-3)/2+n'=|K|—(D-3)/2+ 7= p=l+1+n'=1, 2,..., (57)
we have
EA,+MA, -3
—W:n—|K|+T+7]=I’I'+7]EK. (58
The energyE can be solved from E(58):
AA AA, \2 AZ- kP2
EULK):M[_A{:FIiZ_ Aiiiz _A§+K2 ] 59

We now consider a few special cases. First\jf=0, thenn= \/K2+A22, and

2\ 1/2
E(n,K)=¢M<1—K—§> . (60)

It implies that there are two branches of solutions symmetric for the positive and negative ener-
gies. For a larg®, we have

E(n,D)=*M[1—2A5D 2+4A%(2n—3)D 3—--], (61)

which implies that the energy is independent dér a largeD. For a smallA,, we have
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2n+D-3 1 -
21+D—1 4] (62

AZ A;

E(n,I,D)=*Mj1- 2[n+(D—3)/2]2 * 2[n+(D-3)/2]*

where the first term on the right-hand side is the rest endtgfc?=1 in our conventions the
second one is from the solutions of the Salinger equation, and the third one is the fine structure
energy, which removes the degeneracy between the states with thensame

Second, ifA,=0, then 7;=\/K2—A2l and from Eq.(58) E has the same sign a; when
K2>Ai. For the attractive Coulomb potentiah{>0) we have the positive enerdy;,«

2

1
1+—
K2

-1/2

Enk=M (63

It coincides with the conclusion from the Sturm-Liouville theorem for a weak attractive
potential’® For a largeD similarly we have the same result as F6l).
For a smallA;, we have

A, Al Al
1A~ 2[n+(D-3)/2]> 2[n+(D-3)/2]*

2n+D-3 3

E(n.1.D)=M 21+D-1 4

} . (69

Similarly, the physical meanings of three terms are similar to those of(@&).except for the
different expansion coefficients.

We are now briefly considering the special c&e 1 in this case. It is found that there is
absence of the bound states singlbecomes imaginary regardless of the valuéof This can be
easily checked from the fact that the eigenvalues and eigenfunctions do not exist at all.

Third, if A;=A,, we haven=|K| and

A? . (n+(D-3)/2)?

E(n)=M A§+(n+(D—3)/2)2_A%+(”+(D_3)/2)2

. (65)

If we choose the negative sign in the result, we hBwe— M, which is a singular solution of Eq.
(58). For the positive sign, we have

E M| 1 Gar 66
()= A2+ (n+(D-23)/2)2 66
We now determine the normalization factdgg from the normalization condition

Noticing n’ = 7— 7 is a non-negative integer, we can express the confluent hypergeometric func-
tion by the associated Laguerre polynortial

N _F(a+n+l) _
Ln(P)—mlFl(—n,aJrl,P), (68)
© I'n+ta+1)

fo pie La(p)Ln(p)dp=———Snm- (69

Through a direct calculation we obtain

2_E2\1/4 1/2
_(M E-) { I'(r+n+1) (70

KE™ T@2y+1) [2M7 (K+ 7 ) (17— 7)!
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V. CONCLUDING REMARKS

In this work we have studied th@ +1)-dimensional Dirac equation with a Coulomb plus
scalar potential with the interest of higher-dimensional field theory. The eigenfunctions can be
analytically obtained by studying the second-order differential equations obtained from the first-
order coupled ones. The eigenvalues as well as their special cases are studied. Before ending this
article, we give two remarks here. First, in comparison with the 3D case, the angular momentum
quantum numbeK in D+ 1 dimensions plays the role of the good quantum numbgr three
dimensiong(more strictly,|K|+ 3| «|). Second, for the special caBe=1, it is found from Eq.

(35) that K=0. Therefore, it is shown from Ed47) that » becomes imaginary ifA,|<|A,|,
which means that there is absence of the bound states in this case. On the contrary, there exist the

bound states ifA,|>|A,].
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